Calcium Carbonate Storage in Amorphous Form and Its Template-Induced Crystallization
نویسندگان
چکیده
Calcium carbonate crystallization in organisms often occurs through the transformation from the amorphous precursor. It is believed that the amorphous phase could be temporarily stabilized and stored, until its templated transition to the crystalline form is induced. Here we develop a bioinspired crystallization strategy that is based on the above mechanism. Amorphous calcium carbonate (ACC) spherulitic particles are induced to form on a self-assembled monolayer (SAM) of hydroxyl-terminated alkanethiols on a gold surface. The ACC can then be stored in a dry atmosphere as a reservoir for ions and be induced to crystallize on command by the introduction of water and a secondary surface that is functionalized with carboxylic acid-terminated SAM. This secondary surface acts as a template for oriented and patterned nucleation. Various oriented crystalline arrays and micropatterned films are formed. We also show that the ACC phase can be doped with foreign ions (e.g., magnesium) and organic molecules (e.g., dyes) and that these dopants later function as growth modifiers of calcite crystals and become incorporated into the crystals during the transformation process of ACC to calcite. We believe that our strategy opens the way to using a stabilized amorphous phase as a versatile reservoir system that can be converted in a highly controlled fashion to a crystalline form upon contacting a specially designed nucleating template in water.
منابع مشابه
Structural characterization of amorphous calcium carbonate-binding protein: an insight into the mechanism of amorphous calcium carbonate formation.
ACC (amorphous calcium carbonate) plays an important role in biomineralization process for its function as a precursor for calcium carbonate biominerals. However, it is unclear how biomacromolecules regulate the formation of ACC precursor in vivo. In the present study, we used biochemical experiments coupled with bioinformatics approaches to explore the mechanisms of ACC formation controlled by...
متن کاملDehydration and crystallization of amorphous calcium carbonate in solution and in air
The mechanisms by which amorphous intermediates transform into crystalline materials are poorly understood. Currently, attracting enormous interest is the crystallization of amorphous calcium carbonate, a key intermediary in synthetic, biological and environmental systems. Here we attempt to unify many contrasting and apparently contradictory studies by investigating this process in detail. We ...
متن کاملCalcium carbonate crystal growth beneath Langmuir monolayers of acidic β-hairpin peptides.
Four amphiphilic peptides with designed hairpin structure were synthesized and their monolayers were employed as model systems to study biologically inspired calcium carbonate crystallization. Langmuir monolayers of hairpin peptides were investigated by surface pressure area isotherms, surface potential isotherms, Brewster angle microscopy (BAM), atomic force microscopy (AFM) and Fourier transf...
متن کاملDirect fabrication of large micropatterned single crystals.
Micropatterning of single crystals for technological applications is a complex, multistep process. Nature provides alternative fabrication strategies, when crystals with exquisite micro-ornamentation directly develop within preorganized frameworks. We report a bio-inspired approach to growing large micropatterned single crystals. Micropatterned templates organically modified to induce the forma...
متن کاملEthanol assisted synthesis of pure and stable amorphous calcium carbonate nanoparticles.
Stable monodispersed amorphous calcium carbonate (ACC) nanoparticles can be synthesized in ethanol media by a facile method, and crystallization of ACC is kinetically controlled, resulting in the formation of three polymorphs in a mixed solvent of ethanol-water at different pH values.
متن کامل